If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+36x-5152=0
a = 1; b = 36; c = -5152;
Δ = b2-4ac
Δ = 362-4·1·(-5152)
Δ = 21904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21904}=148$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-148}{2*1}=\frac{-184}{2} =-92 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+148}{2*1}=\frac{112}{2} =56 $
| 6w-5-8w+9=112 | | 3x+7x-18=72 | | 1-p+7=-14 | | 10x-61=145 | | 12-5x=16-x | | -(2d-9)=-31 | | 39.67=8g+3.83 | | -8=x/9 | | 9x-10=150 | | 102=69-7x+3x | | 102=69-7x+3x | | (30-2x)(20-2x)(x)=300 | | 481=20u-61 | | 0=0.013x^2-1.19x+21.24 | | 4x+48=2x+60 | | 4x+48=2×+60 | | 1200m+1000=1500+1175m | | 5/2x-5/1=9 | | H=x2-10x+24 | | X+x-23°=180° | | 9x+10=5×+50 | | -4(y-7)=20 | | 1/7x=178 | | 9x−7x=−30 | | x+10/9=8/9+x | | x−32=x5 | | 2r+35+37=90 | | −12=−8x+2x | | 7.3=11n | | 2r+35=90 | | C+2×c-3=14c= | | 5+0.30p=0.20p+7 |